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If u is an entire harmonic function of exponential type less than 7T satisfying
u(n, 0) = u.(n, 0) = 0 for all integers n, then it follows from a result of Zeilberger
that u is identically zero. The main result in this article is to give a series re­
presentation of any entire harmonic function u of exponential type 7 <; 7T with
u(x, 0) and u.(x, 0) in P(- 00, co), for some p > 0, in terms of the values u(n, 0)
and u.(n,O), n = 0, 1,.... A method of construction of a basis is given. This
technique can be extended to other related problems.

1. INTRODUCTION AND RESULTS

An entire harmonic function u(x, y) is a real-valued function, harmonic
in the plane [R2. It is an entire harmonic function of exponential type T,

if I /leX, y)1 < e(T+e)[(x,yl! for all large values of I(x, y)1 = Vx2 + y2 where
E > 0 is arbitrary. By Caratheodory's inequality [4; p. 3], u(x, y) is entire
harmonic of exponential type T if and only if u(x, y) = Ref(z), z = x + iy,
where f is an entire (analytic) function of exponential type T. In [3], Boas
pointed out that at least we need to know the function values on a two­
dimensional set in [R2 in order to uniquely determine an entire harmonic
function. For instance, the function u(x, y) = y is zero for all y = O. He
also proved in [3] that if u(x, y) is entire harmonic and of exponential type
type T < 7T, then u(x, y) - 0 if it is zero at the lattice points (n, 0) and (n, 1),
n = 0, ±1, ±2,.... Several interesting problems were posed in [3]. One
of these problems was to construct u(x, y) from its values at these lattice
points. This question was answered by Ching and Chui in [5], in which u(x, 0)
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and u(x,l) are both assumed to belong to V(--oo, (0). Later, Anderson
proved the convergence of the series representation introduced in [5J under
weaker hypotheses on u(x, 0) and u(x, 1). Another problem in [3] was to
generalize the uniqueness results in [3J to higher dimensions. This was done
in [2, 7]. As a consequence, it follows that the values lI(n, 0) and u-y(n, 0),
11 = 0, 1, ... , on a one-dimensional set are sufficient to determine u provided
that the type of T of u is less than 71". That is, the following result is obtained.

PROPOSITION 1. Let u(x, y) be an entire harmonic function of exponential
type, < 71" such that u(n,O) = uy(n, 0) = 0, n = 0, ±1, ±2,.... Then
u(x, y) = 0.

This result is sharp in the sense that T < 71" cannot be replaced by T < i.,

because of the example (clery + C2C 1TY) sin 1TX. Vie also remark that the
function u(x, y) = y satisfies u(n,O) = uxCn,O) = 0 for n = 0, ±l,... ,
so that the hypotheses on the normal derivative U y cannot be replaced by
that on the tangential derivative. We will give a very simple function­
theoretic proof of this uniqueness result. This proof will also facilitate our
derivation of our series representation theorem.

Note that the functions

CXn(x, y) = 2~ J1T cosh t.l'eit (X-n> dt
-1T

and
Q ( ) = 1- (rr sinh ty ii(x-n) dt
fJn x, Y 2 e_

71" ~-1T t

are entire harmonic functions of exponential type 71" and satisfy

and

CJl. n(l1l, 0) = om,n ,

(3n(m,O) = 0,

8
-8 CY.n(m, 0) = 0,

y
(1)

for all integers m and n. We use these functions as a basis to solve the repre­
sentation problem. Namely, we have the following result..

THEOREM 1. Let u(x, y) be an entire harmonic function of exponential
type ~71" such that u(x, 0) and u-y{x, 0) belong to D'( - 00, (0), for some p,°< p < 00. Then

co

u(x, Y) = L u(n, 0) cxn(x, y) + L uln, 0) (3n(x, Y), (2)
n=-co

where the series converges uniformly on every compact subset of jR2.
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We emphasize that while Proposition 1 holds only for entire harmonic
functions of exponential type less than 7/", Theorem 1 holds for those of
type ~7/". Of course, for y = °the function (c1e"Y + c2e-"Y) sin 7/"X is not
in LP, °< p < 00. This example also shows that °< p < 00 cannot be
replaced by p = 00 in Theorem 1. For p = 2, following Ching and Chui [5],
it can be proved that the convergence of the series in (2) is uniform on every
strip Iy I ~ K < 00. We will give a method of construction of the basis
functions CXn and f3n . This method can be extended to other related problems.

2. PROOF OF THE RESULTS

Let u(x, y) be an entire harmonic function of exponential type T < 7/" such
that u(n, 0) = uy{n, 0) = 0, n = 0, ±l,.... We have to prove that u(x, y) - 0.
Let vex, y) be a harmonic conjugate of u(x, y) andf(z) = u(z) + iv(z). Also,

set F(z) = fez) + fez). Then F(z) is an entire function of exponential type
T < 7/" and reduces to 2u(x, 0) on the real axis. Thus, F(z) vanishes at all the
integers. By Carlson's theorem, F(z) vanishes identically. Now, consider the

entire function G(z) = I'(z) - I'(z). G(z) is of exponential type T < 7/" and
reduces to 2ivxCx,0) on the real axis. But vix, y) = -uy(x, y) so that
G(x) = -2iulx, 0). But uln,O) = 0, n = 0, ±I, ... , yields G(n) = 0,
n = 0, ±I,.... Again by Carlson's theorem, G(z) is identically zero.

From the identities F(z) = G(z) = ° and using the Cauchy-Riemann
equations, we have ux(x, -y) = -u,,(x, y) and u,,(x, -y) = ux(x, y), so that
uix, y) is constant for fixed y. Similarly, we also have ulx, -y) = ulx, y)
and ulx, -y) = -ulx, y) so that ulx, y) is also constant when y is fixed.
Hence by a standard argument, we have u(x, y) = C1 Y + C2 for some
constants C1 and C2 • But the hypothesis u(O, 0) = u(l, 0) = °implies that
C1 = C2 = 0, or u(x, y) - 0. This completes the proof of Proposition 1.
To prove the representation theorem, we first give a method of construction
of the basis functions iXn and f3" .

In view of the basis functions obtained in [5], it is natural to consider the
basis functions cx" and f3" of the form

I J"h,,(x, y) = 27/" kef, y) eit(x-,,) dt.
-IT

If h" is entire harmonic, then the kernel k(t, y) must satisfy the equation
k yy - t 2k = °for all t and y. Fix t and consider K(-) = k(t, .) as a function
of the second variable. By choosing k(t,O) == 1, then h,,(m,O) = 8m•n

already. Hence, if we require chn(m, O)/oy = °for all m, we have

r kit, 0) eiti dt = °
"
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for all integers j, so that kit, 0) = O. That is, we have the initial valued
problem

K(O) = I, K(O) = o.

The solution is k(t, y) = K( y) = cosh ty. That is, the basis function ,x,lx, ,;')
satisfying x,,(m, 0) = on.m and oO'n(m, O)loy = 0 for all m is

1 J'r. ,()In(x, y) = 2- cosh tye,t(X-lI) dt,
1T -'IT

Similarly, the basis function f3n(x, y) satisfying 13,,(111, 0) = 0, Of3n(l11, O)/Ey =

o,,,,n for all 111 is obtained to be

Q ( ,) = ~ f'IT sinh ty it(x-n) d
fJn X, ), 2 ' e .t.TT _'IT l

To complete the proof of Theorem 1, we need several lemmas.

LEMMA 1. For all (x, y) E 1R2 and n =F 0,

i ,)",ex, y)1 :::;: (~ + I x I + I)' I) er.lyl i 11 1--1 (3)
TT ,

I f3nCx, y)[ :::;: (1 +~ --l-- 7i' [ y i + y2 + I xy I)' ew[y[ In 1-\ (4), TT

and I O'o(x, y)i :::;: ew!yl, I f3o(x, y)1 :::;: Iy I ew[YI.

Let z = x + iy be fixed and consider the functions jet) = eilx cosh ty
and ket) = eitx sinh tylt. Then <:xix, y) and f3n(x, y) are the nth Fourier
coefficients ofj(t) and k(t), respectively. We first prove that for alII t I < TT,
jet) and k(t) satisfy the following inequalities:

and

[j(t)1 :::;: ew!yl,

Jj'(t)1 :::;: (I x I + Iy I) er.lyl,

Ik(t)l:::;: !y!ew1yl ,

I k'(t)1 :::;: (l + TT I y I + y2 + I xy I) err;YI.

(5)

(6)

(7)

(8)

Inequalities (5) and (6) are immediate from the definitions of jet). For
I t [ :::;: TT, we have

I
sinh ty I -_ I oc (ty)2" I

t ,to (2/1 + I)! I I y !

:::;: i y I cosh [ ty: :::;: i y I ewl "i, (9)
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which gives (7). To prove (8), we set let) = sinh tyjt and note that l'(t) =
(ty cosh ty - sinh ty)jt2. Hence, for 1 ~ I t I ~ 77, I l'(t)I~ (77 I y I + 1) e'rfYl,

and for I t I ~ 1, we have

, 1'1 ro (ty)2n+l ro (ty)2n+l I
[I (t)1 = f2 n~o (2n)! -.to (2n + 1)1

:< 1 \ ~ 2n ()2"+1 I
'" f2 21 (2n + 1)! ty

These estimates give

[l'(t)! ~ (1 + 77 I y I + y2) e"lyl.

Using (9) and (10), we therefore have

[k'(t)1 ~ I x I [ l(t)I + I l'(t)I
~ (I xy I + 1 + 77 Iy I + y2) e"IYI,

(10)

which is (8). We now return to derive the estimates for cxn(x, y) and f3n(x, y).
The estimates for 11 = °are trivial. For n oF 0, we have

I cxn(x, y)[ = IL(J(t) r int dt I
~ I sin 77(n - x) cosh 77yj77n I

+ 1_1 J" ret) e-int dt I
277n _"

~ e+ I x I + Iy I) e*ljl n I

by using (6). This gives (3). To estimate f3n(x, y), n oF 0, we have

I f3n(x, y)! = I~r k(t) e-int dt I
217 _"

~ I sinh (17Y) sin 77(n - X)j7Tll I

+ 1_1 J" k'(t) r int dt I
217n -':f

~ (~ + 1 + 17 Iy I + y2 + Ixy I) e"IYljl n I

by using (8). This completes the proof of Lemma 1.
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We also need the following lemma which was proved in [1].

LEMMA 2. Let u(x, y) be an entire harmonic function of exponential type
T ~ 71" such that u(x, 0) and uy{x, 0) are both in LP( - 00, 00), 0 < p < ce.
Then u(x, n) satisfies the following:

I I lI(n,O) I < 00,

,,"'0 1/

(11)

(12)

u(x, 0) = 0(1) and uix,O) = 0(1) as I x i ~ 00. (13)

We are now ready to prove Theorem 1. Let u(x, y) satisfy the hypotheses
in the theorem. For any compact set Kin [R2, Lemma 1 yields

(
' 1 .) Iu(n 0) II u(n, 0) cxn(x, )-')1 ~ --.;;: + I x i -f- I)' I e,,[yl ---j;--I

'c I u(n, 0) I'~ K ---
. n I

for all (x, y) E K, where CK < 00 is some constant depending only on K.
A similar estimate holds for uy(n, 0) f3n(x, y). Hence, by Lemma 2, the series

oc

I u(n, 0) cxn(x, y) -+- uln, 0) ,Bn(x, y)
n=-C/J

converges uniformly on every compact subset of [R2 to some entire harmonic
function w(x, y). From the same estimates above, it is clear that w(x,}'}
is of exponential type T ~ 71". Let U(x, y) = u(x, y) - w(x, y). It is sufficient
to prove that U(x, y) - O. Using the proof given in [1], that is, by a conse­
cutive application of the Plancherel-P6lya and the Riemann-Stieltjes
theorems, we conclude that U(x, 0) = Uy(x, y) = 0 for all x. As in the proof
of the proposition, let h(z) be an entire function with Re h(z) = U(x, .y),

z = x -+-- iy, and set H(z) = h(z) + h(i). Then H(x) = 2U(x, 0) = 0

for all real x, so that H(z) = O. Similarly, let L(z) = h'(z) - h'("2). Then
L(x) = 2iUix, 0) = 0 by using the Cauchy-Riemann equations. Thus,

L(z) = O. Write h(z) = L anzn • Since H(z) = h(z) + 11("2) - 0, we have

an +- an = 0 for all n. Also, L(z) = h'(z) - h'("2) = 0 implies nan - nan = 0
for all n. We conclude, therefore, that ao is pure imaginary and an = 0
for n = 1,2,.... Hence, U(x, y) = Re l1(z) - 0, completing the proof of
the theorem.
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3. FINAL REMARKS

By using standard techniques in classical function theory, the uniqueness
result in Proposition 1 can be improved. For example, the following unique­
ness result is obtained in [6].

PROPOSITION 2. If u is an entire harmonic function of exponential type
7T such that I u(x, y)l, I u,,(x, y)[, I uy(x, Y)I ~ Ae7T [(x,y)[, and u(n, 0)
uy(n, O) = 0 for n = 0, ±l,... , then u(x, y) = (c1e7TY + c2e-7TY) sin 7TX.

Similarly, the techniques used in this paper can be extended to give other
related uniqueness and representation results (cf. [6]).
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