An Interpolation Formula for Harmonic Functions on the Set of Integers

CHARLES K. CHUI

Department of Mathematics, Texas A&M University, College Station, Texas 77843

AND

GEORGE A. ROBERTS

Department of Mathematics, Wiley College, Marshall, Texas 75670 Communicated by Oved Shisha Received January 15, 1979

DEDICATED TO THE MEMORY OF P. TURÁN

If u is an entire harmonic function of exponential type less than π satisfying $u(n, 0) = u_y(n, 0) = 0$ for all integers n, then it follows from a result of Zeilberger that u is identically zero. The main result in this article is to give a series representation of any entire harmonic function u of exponential type $\tau \leq \pi$ with u(x, 0) and $u_y(x, 0)$ in $L^{p}(-\infty, \infty)$, for some p > 0, in terms of the values u(n, 0) and $u_y(n, 0)$, n = 0, 1,... A method of construction of a basis is given. This technique can be extended to other related problems.

1. INTRODUCTION AND RESULTS

An entire harmonic function u(x, y) is a real-valued function, harmonic in the plane \mathbb{R}^2 . It is an entire harmonic function of exponential type τ , if $|u(x, y)| \leq e^{(\tau+\epsilon)|(x,y)|}$ for all large values of $|(x, y)| = \sqrt{x^2 + y^2}$ where $\epsilon > 0$ is arbitrary. By Carathéodory's inequality [4; p. 3], u(x, y) is entire harmonic of exponential type τ if and only if $u(x, y) = \operatorname{Ref}(z), z = x + iy$, where f is an entire (analytic) function of exponential type τ . In [3], Boas pointed out that at least we need to know the function values on a twodimensional set in \mathbb{R}^2 in order to uniquely determine an entire harmonic function. For instance, the function u(x, y) = y is zero for all y = 0. He also proved in [3] that if $u(x, y) \equiv 0$ if it is zero at the lattice points (n, 0) and (n, 1), $n = 0, \pm 1, \pm 2,...$ Several interesting problems were posed in [3]. One of these problems was to construct u(x, y) from its values at these lattice points. This question was answered by Ching and Chui in [5], in which u(x, 0) and u(x, 1) are both assumed to belong to $L^2(-\infty, \infty)$. Later, Anderson proved the convergence of the series representation introduced in [5] under weaker hypotheses on u(x, 0) and u(x, 1). Another problem in [3] was to generalize the uniqueness results in [3] to higher dimensions. This was done in [2, 7]. As a consequence, it follows that the values u(n, 0) and $u_y(n, 0)$, n = 0, 1,..., on a one-dimensional set are sufficient to determine u provided that the type of τ of u is less than π . That is, the following result is obtained.

PROPOSITION 1. Let u(x, y) be an entire harmonic function of exponential type $\tau < \pi$ such that $u(n, 0) = u_y(n, 0) = 0$, $n = 0, \pm 1, \pm 2,...$ Then u(x, y) = 0.

This result is sharp in the sense that $\tau < \pi$ cannot be replaced by $\tau \leq \pi$, because of the example $(c_1 e^{\pi y} + c_2 e^{-\pi y}) \sin \pi x$. We also remark that the function u(x, y) = y satisfies $u(n, 0) = u_x(n, 0) = 0$ for $n = 0, \pm 1, ...,$ so that the hypotheses on the normal derivative u_y cannot be replaced by that on the tangential derivative. We will give a very simple functiontheoretic proof of this uniqueness result. This proof will also facilitate our derivation of our series representation theorem.

Note that the functions

$$\alpha_n(x, y) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cosh t y e^{it(x-n)} dt$$

and

$$\beta_n(x, y) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\sinh ty}{t} e^{it(x-n)} dt$$

are entire harmonic functions of exponential type π and satisfy

 $\alpha_n(m,0) = \delta_{m,n}, \qquad \frac{\partial}{\partial y} \alpha_n(m,0) = 0,$

and

$$\beta_n(m, 0) = 0, \qquad \frac{\partial}{\partial y} \beta_n(m, 0) = \delta_{m,n},$$

1 integers *m* and *n*. We use these functions as a basis to solve the repre-

for all integers m and n. We use these functions as a basis to solve the representation problem. Namely, we have the following result.

THEOREM 1. Let u(x, y) be an entire harmonic function of exponential type $\leq \pi$ such that u(x, 0) and $u_y(x, 0)$ belong to $L^p(-\infty, \infty)$, for some p, 0 . Then

$$u(x, y) = \sum_{n=-\infty}^{\infty} u(n, 0) \alpha_n(x, y) + \sum_{n=-\infty}^{\infty} u_n(n, 0) \beta_n(x, y),$$
(2)

where the series converges uniformly on every compact subset of \mathbb{R}^2 .

(1)

CHUI AND ROBERTS

We emphasize that while Proposition 1 holds only for entire harmonic functions of exponential type less than π , Theorem 1 holds for those of type $\leq \pi$. Of course, for y = 0 the function $(c_1e^{\pi y} + c_2e^{-\pi y}) \sin \pi x$ is not in L^p , 0 . This example also shows that <math>0 cannot be $replaced by <math>p = \infty$ in Theorem 1. For p = 2, following Ching and Chui [5], it can be proved that the convergence of the series in (2) is uniform on every strip $|y| \leq K < \infty$. We will give a method of construction of the basis functions α_n and β_n . This method can be extended to other related problems.

2. PROOF OF THE RESULTS

Let u(x, y) be an entire harmonic function of exponential type $\tau < \pi$ such that $u(n, 0) = u_y(n, 0) = 0$, $n = 0, \pm 1,...$ We have to prove that $u(x, y) \equiv 0$. Let v(x, y) be a harmonic conjugate of u(x, y) and f(z) = u(z) + iv(z). Also, set $F(z) = f(z) + \overline{f(\overline{z})}$. Then F(z) is an entire function of exponential type $\tau < \pi$ and reduces to 2u(x, 0) on the real axis. Thus, F(z) vanishes at all the integers. By Carlson's theorem, F(z) vanishes identically. Now, consider the entire function $G(z) = f'(z) - \overline{f'(\overline{z})}$. G(z) is of exponential type $\tau < \pi$ and reduces to $2iv_x(x, 0)$ on the real axis. But $v_x(x, y) = -u_y(x, y)$ so that $G(x) = -2iu_y(x, 0)$. But $u_y(n, 0) = 0$, $n = 0, \pm 1,...$, yields G(n) = 0, $n = 0, \pm 1,...$ Again by Carlson's theorem, G(z) is identically zero.

From the identities F(z) = G(z) = 0 and using the Cauchy-Riemann equations, we have $u_x(x, -y) = -u_x(x, y)$ and $u_x(x, -y) = u_x(x, y)$, so that $u_x(x, y)$ is constant for fixed y. Similarly, we also have $u_y(x, -y) = u_y(x, y)$ and $u_y(x, -y) = -u_y(x, y)$ so that $u_y(x, y)$ is also constant when y is fixed. Hence by a standard argument, we have $u(x, y) = c_1 y + c_2$ for some constants c_1 and c_2 . But the hypothesis u(0, 0) = u(1, 0) = 0 implies that $c_1 = c_2 = 0$, or $u(x, y) \equiv 0$. This completes the proof of Proposition 1. To prove the representation theorem, we first give a method of construction of the basis functions α_n and β_n .

In view of the basis functions obtained in [5], it is natural to consider the basis functions α_n and β_n of the form

$$h_n(x, y) = \frac{1}{2\pi} \int_{-\pi}^{\pi} k(t, y) e^{it(x-n)} dt.$$

If h_n is entire harmonic, then the kernel k(t, y) must satisfy the equation $k_{yy} - t^2k = 0$ for all t and y. Fix t and consider $K(\cdot) = k(t, \cdot)$ as a function of the second variable. By choosing k(t, 0) = 1, then $h_n(m, 0) = \delta_{m,n}$ already. Hence, if we require $\partial h_n(m, 0)/\partial y = 0$ for all m, we have

$$\int_{-\pi}^{\pi} k_y(t,0) e^{itj} dt = 0$$

for all integers j, so that $k_y(t, 0) = 0$. That is, we have the initial valued problem

$$K'' - t^2 K = 0,$$

 $K(0) = 1, \qquad K'(0) = 0.$

The solution is $k(t, y) = K(y) = \cosh ty$. That is, the basis function $\alpha_n(x, y)$ satisfying $\alpha_n(m, 0) = \delta_{n,m}$ and $\partial \alpha_n(m, 0)/\partial y = 0$ for all m is

$$\alpha_n(x, y) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cosh t y e^{it(x-n)} dt$$

Similarly, the basis function $\beta_n(x, y)$ satisfying $\beta_n(m, 0) = 0$, $\partial \beta_n(m, 0)/\partial y = \delta_{m,n}$ for all *m* is obtained to be

$$\beta_n(x, y) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\sinh ty}{t} e^{it(x-n)} dt.$$

To complete the proof of Theorem 1, we need several lemmas.

LEMMA 1. For all $(x, y) \in \mathbb{R}^2$ and $n \neq 0$,

$$|\alpha_n(x, y)| \leq \left(\frac{1}{\pi} + |x| + |y|\right) e^{\pi |y|} |n|^{-1}$$
 (3)

$$|\beta_n(x, y)| \leq \left(1 + \frac{1}{\pi} + \pi |y| + y^2 + |xy|\right) e^{\pi |y|} |n|^{-1}, \qquad (4)$$

and $|\alpha_0(x, y)| \leq e^{\pi|y|}, |\beta_0(x, y)| \leq |y| e^{\pi|y|}.$

Let z = x + iy be fixed and consider the functions $j(t) = e^{itx} \cosh ty$ and $k(t) = e^{itx} \sinh ty/t$. Then $\alpha_n(x, y)$ and $\beta_n(x, y)$ are the *n*th Fourier coefficients of j(t) and k(t), respectively. We first prove that for all $|t| \leq \pi$, j(t) and k(t) satisfy the following inequalities:

$$|j(t)| \leqslant e^{\pi |y|},\tag{5}$$

$$|j'(t)| \leq (|x| + |y|) e^{\pi |y|}, \tag{6}$$

$$|k(t)| \leq |y| e^{\pi |y|},\tag{7}$$

and

$$|k'(t)| \leq (1 + \pi |y| + y^2 + |xy|) e^{\pi |y|}.$$
 (8)

Inequalities (5) and (6) are immediate from the definitions of j(t). For $|t| \leq \pi$, we have

$$\left|\frac{\sinh ty}{t}\right| = \left|\sum_{n=0}^{\infty} \frac{(ty)^{2n}}{(2n+1)!}\right| |y|$$
$$\leqslant |y| \cosh |ty| \leqslant |y| e^{\pi |y|}, \tag{9}$$

which gives (7). To prove (8), we set $l(t) = \sinh ty/t$ and note that $l'(t) = (ty \cosh ty - \sinh ty)/t^2$. Hence, for $1 \le |t| \le \pi$, $|l'(t)| \le (\pi |y| + 1) e^{\pi |y|}$, and for $|t| \le 1$, we have

$$|l'(t)| = \frac{1}{t^2} \left| \sum_{n=0}^{\infty} \frac{(ty)^{2n+1}}{(2n)!} - \sum_{n=0}^{\infty} \frac{(ty)^{2n+1}}{(2n+1)!} \right|$$
$$\leq \frac{1}{t^2} \left| \sum_{n=1}^{\infty} \frac{2n}{(2n+1)!} (ty)^{2n+1} \right|$$
$$\leq |y|^2 |\sinh|ty| | \leq y^2 e^{|y|} \leq y^2 e^{\pi |y|}.$$

These estimates give

$$|l'(t)| \leq (1 + \pi |y| + y^2) e^{\pi |y|}.$$
(10)

Using (9) and (10), we therefore have

$$|k'(t)| \leq |x| |l(t)| + |l'(t)| \leq (|xy| + 1 + \pi |y| + y^2) e^{\pi |y|},$$

which is (8). We now return to derive the estimates for $\alpha_n(x, y)$ and $\beta_n(x, y)$. The estimates for n = 0 are trivial. For $n \neq 0$, we have

$$|\alpha_n(x, y)| = \left|\frac{1}{2\pi} \int_{-\pi}^{\pi} j(t) e^{-int} dt\right|$$

$$\leqslant |\sin \pi (n-x) \cosh \pi y/\pi n|$$

$$+ \left|\frac{1}{2\pi n} \int_{-\pi}^{\pi} j'(t) e^{-int} dt\right|$$

$$\leqslant \left(\frac{1}{\pi} + |x| + |y|\right) e^{\pi |y|}/|n$$

by using (6). This gives (3). To estimate $\beta_n(x, y)$, $n \neq 0$, we have

$$|\beta_{n}(x, y)| = \left|\frac{1}{2\pi}\int_{-\pi}^{\pi}k(t) e^{-int} dt\right|$$

$$\leq |\sinh(\pi y)\sin\pi(n-x)/\pi n|$$

$$+\left|\frac{1}{2\pi_{n}}\int_{-\pi}^{\pi}k'(t) e^{-int} dt\right|$$

$$\leq \left(\frac{1}{\pi}+1+\pi |y|+y^{2}+|xy|\right)e^{\pi |y|}/|n|$$

by using (8). This completes the proof of Lemma 1.

We also need the following lemma which was proved in [1].

LEMMA 2. Let u(x, y) be an entire harmonic function of exponential type $\tau \leq \pi$ such that u(x, 0) and $u_y(x, 0)$ are both in $L^p(-\infty, \infty)$, 0 .Then <math>u(x, n) satisfies the following:

$$\sum_{n\neq 0} \left| \frac{u(n,0)}{n} \right| < \infty, \tag{11}$$

$$\sum_{n\neq 0} \left| \frac{u_y(n,0)}{n} \right| < \infty, \tag{12}$$

$$u(x,0) = o(1) \quad and \quad u_y(x,0) = o(1) \quad as \quad |x| \to \infty.$$
 (13)

We are now ready to prove Theorem 1. Let u(x, y) satisfy the hypotheses in the theorem. For any compact set K in \mathbb{R}^2 , Lemma 1 yields

$$|u(n, 0) \alpha_n(x, y)| \leq \left(\frac{1}{\pi} + |x| + |y|\right) e^{\pi|y|} \left| \frac{u(n, 0)}{n} \right|$$
$$\leq C_K \left| \frac{u(n, 0)}{n} \right|$$

for all $(x, y) \in K$, where $C_K < \infty$ is some constant depending only on K. A similar estimate holds for $u_y(n, 0) \beta_n(x, y)$. Hence, by Lemma 2, the series

$$\sum_{n=-\infty}^{\infty} u(n,0) \alpha_n(x,y) + u_y(n,0) \beta_n(x,y)$$

converges uniformly on every compact subset of \mathbb{R}^2 to some entire harmonic function w(x, y). From the same estimates above, it is clear that w(x, y)is of exponential type $\tau \leq \pi$. Let U(x, y) = u(x, y) - w(x, y). It is sufficient to prove that $U(x, y) \equiv 0$. Using the proof given in [1], that is, by a consecutive application of the Plancherel-Pólya and the Riemann-Stieltjes theorems, we conclude that $U(x, 0) = U_y(x, y) = 0$ for all x. As in the proof of the proposition, let h(z) be an entire function with Re h(z) = U(x, y), z = x + iy, and set $H(z) = h(z) + \overline{h(\overline{z})}$. Then H(x) = 2U(x, 0) = 0for all real x, so that $H(z) \equiv 0$. Similarly, let $L(z) = h'(z) - \overline{h'(\overline{z})}$. Then $L(x) = 2iU_y(x, 0) = 0$ by using the Cauchy-Riemann equations. Thus, $L(z) \equiv 0$. Write $h(z) = \sum a_n z^n$. Since $H(z) = h(z) + \overline{h(\overline{z})} \equiv 0$, we have $a_n + \overline{a}_n = 0$ for all n. Also, $L(z) = h'(z) - \overline{h'(\overline{z})} \equiv 0$ implies $na_n - n\overline{a}_n = 0$ for all n. We conclude, therefore, that a_0 is pure imaginary and $a_n = 0$ for n = 1, 2,.... Hence, $U(x, y) = \operatorname{Re} h(z) \equiv 0$, completing the proof of the theorem.

CHUI AND ROBERTS

3. FINAL REMARKS

By using standard techniques in classical function theory, the uniqueness result in Proposition 1 can be improved. For example, the following uniqueness result is obtained in [6].

PROPOSITION 2. If u is an entire harmonic function of exponential type π such that |u(x, y)|, $|u_x(x, y)|$, $|u_y(x, y)| \leq Ae^{\pi |(x, y)|}$, and $u(n, 0) = u_y(n, 0) = 0$ for $n = 0, \pm 1, ...,$ then $u(x, y) = (c_1 e^{\pi y} + c_2 e^{-\pi y}) \sin \pi x$.

Similarly, the techniques used in this paper can be extended to give other related uniqueness and representation results (cf. [6]).

References

- 1. K. F. ANDERSON, On the representation of harmonic functions by their values on lattice points, J. Math. Anal. Appl. 49 (1975), 692–695.
- 2. D. H. ARMITAGE, Uniqueness theorems for harmonic functions which vanish at lattice points, J. Approximation Theory 26 (1979), 259–268.
- 3. R. P. BoAs, JR., A uniqueness theorem for harmonic functions, J. Approximation Theory 5 (1972), 425–427.
- 4. R. P. BOAS, JR., "Entire Functions," Academic Press, New York, 1954.
- C. H. CHING AND C. K. CHUI, A representation formula for harmonic functions. Proc. Amer. Math. Soc. 39 (1973), 349–352.
- 6. G. A. ROBERTS, "Uniqueness and Interpolation of Entire Harmonic Functions," Ph.D. dissertation, Texas A&M Univ., College Station, 1979.
- 7. D. ZEILBERGER, Uniqueness theorems for harmonic functions of exponential growth, *Proc. Amer. Math. Soc.* 61 (1976), 335-340.